FDA Approves First 3D Printed Facial Implant

Oxford Performance Materials, Inc. (OPM) has announced that it has received 510(k) clearance from the FDA for its 3D printed OsteoFab® Patient-Specific Facial Device (OPSFD).

OPM’s facial device is the first and only FDA cleared 3D printed polymeric implant for facial indications, and follows FDA clearance of the first and only 3D printed polymeric implant, OPM’s OsteoFab Patient-Specific Cranial Device, which was granted in February 2013.

"There has been a substantial unmet need in personalized medicine for truly individualized - yet economical - solutions for facial reconstruction, and the FDA’s clearance of OPM’s latest orthopedic implant marks a new era in the standard of care for facial reconstruction,” said Scott DeFelice, Chief Executive Officer and Chairman of Oxford Performance Materials. “Until now, a technology did not exist that could treat the highly complex anatomy of these demanding cases. With the clearance of our 3D printed facial device, we now have the ability to treat these extremely complex cases in a highly effective and economical way, printing patient-specific maxillofacial implants from individualized MRI or CT digital image files from the surgeon. This is a classic example of a paradigm shift in which technology advances to meet both the patient’s needs and the cost realities of the overall healthcare system.”

The OPSFD will be 3D printed by OPM Biomedical, an original equipment manufacturer (OEM) of medical devices utilizing the company’s OsteoFab® process, which combines laser sintering additive manufacturing technology and OPM’s proprietary OXPEKK® powder formulation to print orthopedic and neurological implants. These implants are biocompatible, mechanically similar to bone, radiolucent, and support bone attachment (i.e. osteoconductive).

OPM technology is also designed to reduce the overall “cost of ownership” to the customer by decreasing operating room time, hospital length of stay and procedure complications. In addition, OsteoFab customers do not pay a premium for the individualized 3D printed implant.

“An exciting aspect of our technology is that additional complexity does not increase manufacturing cost, and having both cranial and facial devices cleared now enables us to answer ever more complex cases where upper facial structures can be incorporated with cranial implants as a single device,” added Severine Zygmont, President of OPM Biomedical. “As a result, additive manufacturing has the potential to not only improve patient outcomes, but fundamentally improve the economics of orthopedics on a global scale – for developed and developing countries. These are disruptive changes that will allow the industry to provide the finest levels of healthcare to more people at a lower cost.”

Source: Oxford PM